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CONSISTENT STRUCTURES OF INVARIANT 
QUADRATURE RULES FOR THE n-SIMPLEX 

J. I. MAEZTU AND E. SAINZ DE LA MAZA 

ABSTRACT. In this paper we develop a technique to obtain, in a systematic way, 
the consistency conditions for the n-dimensional simplex Tn for any dimen- 
sion n and degree of precision d. The introduction of a convenient basis of 
invariant polynomials provides a powerful tool to analyze and obtain consistent 
structures. We also present tables listing the optimal consistent structures for 
dimensions n = 2, . 8 and degree of precision up to d = 23. This paper 
is devoted only to structures. No quadrature rules are presented here. 

1. INTRODUCTION 

Constructing quadrature formulas with a given structure requires the solu- 
tion of a system of moment equations. These are nonlinear and the system can 
be very large. Such a major computational task may be helped if information 
about structures for which there is likely to be a solution is available. Some 
information of this type is provided by a set of consistency conditions. We de- 
velop here a theory which allows one to obtain the set of consistency conditions 
for the system of nonlinear equations arising for the n-simplex. For example, 
this would allow a solver to discard a priori many structures (the nonconsis- 
tent ones) whose corresponding systems of moment equations do not have any 
solution. 

Let Tn denote a nondegenerate simplex in the n-dimensional Euclidean 
space R' and let %n be the symmetry group of Tn, that is, the set of all 
affine transformations s: R' -- R' that leave Tn invariant. For every x E R' , 
let v(x) denote the number of different points in the so-called orbit of x, that 
is, 

(1.1) v(x) = card {s(x): s E 9,} . 

The value v(x) depends on the relative position of the point x in the simplex 
Tn. More specifically, v (x) is determined by the form taken by the barycentric 
representation of x (see later). 

Let N denote the set of all nonnegative integers. Given a point x = (xl, ... 

xn) E Rn and a multi-index ct = (al, ... , an) E Nn, we denote as usual xa = 
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xIal * * XnOn and lal = at +. .+an,. Let .9 be the space of real polynomials in 
the n variables xi, ... , xn . Let 9Ld denote the space of real polynomials of 
degree not greater than d and let Xd denote the space of real and homogeneous 
polynomials of degree d. That is, d = span {xa: a E Nn , Ial < d} and d = 

span {xa: a E Nn', jai = d}. 

Definition 1. A polynomial p E LA is said to be invariant when 

(1.2) p (S (X))' = p (X) VS E gfn, VX E Rn 

Let us denote by LA* the space of all invariant polynomials of LA, and let 
?@d* = 9* n 9f,d and Xd* = 9f* n d be the spaces of all invariant polynomials 
of LAd and d , respectively. 

Now, let us consider the integral 

(1.3) If=If(x)dx 
vol(Tn) TnT 

and the problem of constructing a quadrature rule 

1(Q) 
(1.4) Q(f) = E Wif(xi) 

i= 1 

that approximates I(f) with a given degree of precision d, that is, verifying 

(1.5) Q(p) =I(p) VP E LAd , 

and having a number of nodes, say v(Q), as low as possible. A familiar ap- 
proach to this problem is by considering the coordinates of nodes xi and the 
weights WJ of the rule as unknown parameters that will be obtained by fitting 
the moment equations 

(1.6) Q(xa) - I(xa) I jai < d. 

For every s E gn, we have s(Tn) = Tn and hence, I(f o s) = I(f). This 
means that integration over Tn is an axis-independent concept in the sense 
described in Bez [2]. Therefore it is convenient to use for computing I(f) 
an algorithm Q(f) with the same independence property, according to the 
definition below. 

Definition 2. A quadrature rule (1.4) is said to be invariant when it satisfies 

(1.7) Q(f QS)= Q(f) VsEn. 

An invariant quadrature rule can be written in the form (see [14]) 

(1.8) Q(f) = Wiv (xi)R(f; xi), 
i=l1 

where the numbers v(xi) are defined by (1.1) and the so-called basic rules 
R(f; xi) are given by 

(1.9) R(f; xi) = (n + s)! E f(s(xi)). 
s EV 



CONSISTENT STRUCTURES FOR THE n-SIMPLEX 1173 

Let us note that the number of separate function values, i.e., the number of 
nodes, involved in a basic rule (1.9) is v(xi). In fact, R(f; xi) can be written 
as 

(1. 10) R(f ; xi) =(z 
(xi) zEorb(xi) 

As in [14], we use this characteristic to classify basic rules in different types, 
where the form that takes the barycentric representation of the generator node 
xi is what determines the type of the corresponding basic rule R(f; xi) . Then, 
the so-called rule structure of an invariant quadrature rule (1.8) is given in the 
form 

(1.1) (Ko K,.., KMn), 

where the numbers Ki indicate how many basic rules of each type are involved 
in (1.8). 

For a given rule structure, the generic form of the corresponding invariant 
quadrature rule contains a number of unknown parameters that is considerably 
smaller than in the case of a generic noninvariant quadrature rule with a similar 
number of nodes. But, on the other hand, this fact is partially compensated by 
a substantial reduction on the number of moment equations to be satisfied, as 
can be deduced from the following well-known theorem. 

Theorem 1 (Sobolev). An invariant quadrature rule (1.8) has degree of precision 
d if and only if 

(1.12) Q (P) = I (p) VP E g2d 

The search for rule structures satisfying certain consistency conditions is a 
first step towards the construction of a quadrature rule of a given degree of 
precision. The rule structure is essential not only to determine the (expected) 
number of nodes of the rule, but also because it defines the functional depen- 
dence on the unknowns in the (reduced) system of moment equations. 

These consistency conditions are linear inequalities to be satisfied by a rule 
structure (1.1 1) in order to guarantee that, if the quadrature problem is consid- 
ered as solving a system of nonlinear equations, then each subsystem will have 
a number of unknowns larger than or equal to the number of equations. They 
attempt to ensure that a quadrature rule can be of a given degree of precision 
d, but for the nonlinear system of moment equations the hazards of nonlinear 
relationships and complex solutions still remain. Thus, strictly mathematically, 
consistency conditions are not necessary nor sufficient for the existence of so- 
lutions of a quadrature problem. 

There have been many authors who have contributed to the calculation of 
quadrature rules for multidimensional regions. Basic references on this field are 
[4, 9, 14 and 20]. More specific results for 2-dimensional polygons are given in 
[3, 5, 7, 15 and 16]. Some results for the n-dimensional simplex are given in [ 1, 
10 and 12]. The introduction of some kind of consistency conditions is mainly 
due to Keast, Lyness, Mantel, Rabinowitz and Richter (see [18] and [19] for 2- 
and 3-dimensional regions, and [14] for more general cases). These conditions 
are difficult to apply in high dimensions, owing to the lack of closed expressions 
to calculate the dimensions of the null spaces of invariant polynomials. In this 
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paper we give a systematic approach to the consistency conditions that hold for 
a general n-dimensional simplex, and develop a technique to obtain, at least 
computationally, the dimensions of the null spaces of invariant polynomials. 

We now give a brief description of the sections of this paper. In ?2 we 
describe the structure of an invariant quadrature rule for the n-dimensional 
simplex T, and in ?3 we analyze and calculate the dimensions of the spaces 
of invariant polynomials and give recurrence relations to obtain them. We also 
define a convenient basis of invariant polynomials, which simplifies greatly the 
calculation of these dimensions. In ?4 we develop the theory to a point where 
we can define the consistency conditions of an invariant quadrature rule. In 
?5 we give some details of how these structures are obtained in practice and of 
how some of the various computational problems encountered are treated. We 
finish with listings of the optimal structures for dimensions n = 2 up to n = 8. 

2. STRUCTURE OF AN INVARIANT QUADRATURE RULE 

Barycentric coordinates are a useful tool to study questions related with the 
symmetry group of a simplex Tn . Let vo, ... , v, denote the n + 1 vertices of 
Tn . The barycentric coordinates A = A(x) of a point x E R" are defined by 

n n 

(2.1) A = (Ao,... I An) Ej = , Eijvj = x. 
j=0 1=0 

It is well known that each symmetry s E an can be identified with a permutation 
of the barycentric coordinates, that is, 

(2.2) Aj(s(x)) = Aj(x), j = 0, ..., n 
where (no, ..., In) is a permutation of (0, ... , n) . Therefore, gn consist of 
(n + 1)! symmetries and, for each x E IRn, the number v(x) defined in (1.1) is 
the same as the number of different points obtained permuting the barycentric 
coordinates of x. This suggests a classification of the points in Rn according 
to the following 

Definition 3. For a given n let r and MO, ..., mr be positive integers satis- 
fying 

r 

(2.3) mom-?Mr?1 ,I m=n 1 (2.3) ~~~~~~~~~~~~~~~~~~~~~~~~~~~mO > ml > *** m l, E mi 
j=o 

A class [MO, mI, . M.., ir] is defined as the set of points x E Rn such that for 
some symmetry s E an the barycentric coordinates representation of s(x) has 
the form 

m() times mI times m,r times 

(2.4) ao() (0 , a, a, a,', . ..,a a,) 

with 
r 

(2.5) Zmjaj= . 
1=o 

From a geometric point of view the class [MO, mI, . M. , inn coincides with 
the set {s(V): s e ?n }, where V denotes the r-dimensional affine manifold 
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TABLE 1. Classes and types of basic rules for dimensions n = 2 to 7 

n Class (Type) ri + 1 vi 

2 Wo = [3] 1 1 n Class (Type) ri + 1 vi 
2 X =[2,1] 2 3 3 o =[4] 1 1 

2 F = [1,1,1] 3 6 3 W = [3,1] 2 4 

4o =15] 1 1 3 F = [2,2] 2 6 

4 F =[4,1] 2 5 3 F = [2,1,1] 3 12 

4 F =[3,2] 2 10 3 F =[1,1,1,1] 4 24 

4 F3 [3,1,1] 3 20 5 4 = [6] 1 1 

4 = [2,2,1] 3 30 5 F = [5,1] 2 6 
4 = [2,1,1,1] 4 60 5 F = [4,2] 2 15 

4 F = [1,1,11,11] 5 120 5 F = [3,3] 2 20 

7 = [8] 1 1 5 F4 = [4,1,1] 3 30 

7 F =[7,1] 2 8 5 F = [3,2,1] 3 60 

7 F =[6,2] 2 28 5 F = [2,2,2] 3 90 

7 F = [5,3] 2 56 5 F = [3,1,1,1] 4 120 

7 F = [4,4] 2 70 5 F = [2,2,1,1] 4 180 

7 F = [6,1,1] 3 56 5 4 = [2,1,1,1,1] 5 360 

7 F = [5,2,1] 3 168 5 0 = [1,1,1,11,1] 6 720 

7 F7 = [4,3,1] 3 280 6 o = [7] 1 1 
7 F8 = [4,2,2] 3 420 6 ; = [6,1] 2 7 

7 &; = [3,3,2] 3 560 6 F2 = [5,2] 2 21 

7 &o0 = [5,1,1,1] 4 336 6 F = [4,3] 2 35 

7 1'lI = [4,2,1,1] 4 840 6 4 = [5,1,1] 3 42 

7 WI2 = [3,3,1,1] 4 1120 6 W5 = [4,2,1] 3 105 
7 &43 = [3,2,2,1] 4 1680 6 F6 = [3,3,1] 3 140 

7 WI4 = [2,2,2,2] 4 2520 6 F = [3,2,2] 3 210 
7 5 = [4,1,1,1,1] 5 1680 6 W = [4,1,1,1] 4 210 

7 6 = [3,2,1,1,1] 5 3360 6 4 = [3,2,1,1] 4 420 
7 WI 7 = [2,2,2,1,1] 5 5040 6 WIo = [2,2,2,1] 4 630 

7 8i= [3,1,1,1,1,1] 6 6720 6 &j1 = [3,1,1,1,1] 5 840 
7 WI9 = [2,2,1,1,1,1] 6 10080 6 Wi2 = [2,2,1,1,1] 5 1260 

7 20 = [2,1,1,1,1,1,1] 7 20160 6 Fj3 = [2,1,1,1,1,1] 6 2520 

7 l = [1,1,1,1,1,1,1,1] 8 40320 6 WI 4 = [1,1,1,1,1,1,1] 7 5040 

with parametric representation in barycentric coordinates given by the right- 
hand side of (2.4) and by (2.5). Let us note that for a given n, the intersection 
of two classes is a class, and that all the classes contain the class [n + 1]. 
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TABLE 2. Classes and types of basic rules for dimension n = 8 

n Class (Type) ri + 1 v1 n Class (Type) ri + 1 v, 

8 W0 = [9] 1 1 8 WI15 = [4,2,2,1] 4 3780 
8 WI = [8,1] 2 9 8 W16 = [3,3,2,1] 4 5040 
8 W2 = [7,2] 2 36 8 WI17 = [3,2,2,2] 4 7560 
8 W3 = [6,3] 2 84 8 WI18 = [5,1,1,1,1] 5 3024 
8 W4 = [5,4] 2 126 8 WI19 = [4,2,1,1,1] 5 7560 
8 W5 = [7,1,1] 3 72 8 W2o = [3,3,1,1,1] 5 10080 
8 W6 = [6,2,1] 3 252 8 W21 = [3,2,2,1,1] 5 15120 
8 W7 = [5,3,1] 3 504 8 W22 = [2,2,2,2,1] 5 22680 
8 W8 = [4,4,1] 3 630 8 W23 = [4,1,1,1,1,1] 6 15120 
8 F9 = [5,2,2] 3 756 8 W24 = [3,2,1,1,1,1] 6 30240 
8 WI 0 = [4,3,2] 3 1260 8 W25 = [2,2,2,1,1,1] 6 45360 
8 WI = [3,3,3] 3 1680 8 W26 = [3,1,1,1,1,1,1] 7 60480 
8 WI2 = [6,1,1,1] 4 504 8 W27 = [2,2,1,1,1,1,1] 7 90720 
8 WI3 = [5,2,1,1] 4 1512 8 W28 = [2,1,1,1,1,1,1,1] 8 181440 
8 WI 4 = [4,3,1,1] 4 2520 8 29 = [1,1,1, ,1,1,1,1,1] 9 362880 

For a given n, the inclusion relation between sets establishes a partial or- 
der relation, say -<, among all the classes of points of R1 . The corresponding 
relationship trees can be easily constructed using a concept similar to the con- 
tracted version given in [14]. For example, the set of integers [3, 1, 1] may 
be obtained from the set [2, 1, 1, 1] by replacing 2,1 by 2+1. Hence, we 
have [3, 1, 1] -< [2, 1, 1, 1]. In a similar way, the set [2, 2, 1] may be ob- 
tained from the set [2, 1, 1, 1] by replacing 1,1 by 1+1. So we also have 
[2, 2, 1] < [2, 1, 1, 1]. 

In Tables 1 and 2 we describe the different classes that are used in this paper. 
For each dimension n, the classes have been enumerated and are represented 
in the form 
(2.6) i = [mo, m, ...,mr], i = 0,... , Mn. 
Let us note that the classes have been numbered in such a way that 
(2.7) Wj < 

n+I times 

and therefore for every n we have that W0 = [n + 1] and CMn =[1, *. 1]. 

Definition 4. A basic rule R(f; xij) is said to be of type W if and only if W 
is the smallest (i.e., the intersection) of all the classes to which the generator 
node xi belongs. 

If W = [MO, ml, ... , mre], the generic form of the nodes of a basic rule of 
type W is given by (2.4), where r = ri and the parameters ao, a1, ..., ar, are 
different and related by (2.5). Hence, for each basic rule R(f; xij) of type K 
we have ri free parameters and a number of nodes, say vi, given by 

(2.8) vi = v(xjj) = (n + 1)! 
M.,lM,If ... mA 
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Definition 5. For a given n, let Ko, K1, ... , Kmn be nonnegative integers with 
Ko < 1. We say that an n-dimensional invariant quadrature rule (1.8) has a 
rule structure (Ko, K1, ... , KMn) when it can be written in the form 

Mn Ki 

(2.9) Q(f) = , WijviR(f ; xij), 
i=0 j=1 

where, for every i = 0, ...,M {R(f; xij); j = 1, ...,Ki} is a set of K1 
different basic rules of type W . 

Ki = 0 means that there is no basic rule of type g in (2.9). The only 
basic rule of type 'o is the one generated by the barycenter of the simplex. 
Therefore, Ko can only take the values 0 or 1. 

Now, let us consider the problem of constructing an invariant quadrature rule 
with a given rule structure and a given degree of precision. The rule structure 
allows us to define, by using Tables 1 and 2, the generic (parametric) form of 
the rule. The global number of nodes of an invariant quadrature rule Q with 
rule structure (Ko, K1, ..., KMn) is given by 

Mn 

(2.10) v(Q) = viKi, 
i=o 

and the number of free parameters to be determined by moment fitting is given 
by 

Mn 

(2.1 1 ) Np(Q) = Z(ri + 1)Ki. 
i=O 

3. ON THE SPACE OF INVARIANT POLYNOMIALS 

Sobolev's result (Theorem 1) shows that the degree of precision of an invari- 
ant quadrature rule only depends on its exactness for invariant polynomials. On 
the other hand, it is important for our purposes to analyze the space 3* of in- 
variant polynomials in such a way that each of the spaces Xd* of homogeneous 
and invariant polynomials of degree d can be identified. This will be done by 
constructing a basis of 3* formed by homogeneous polynomials. Then we will 
have 

(3.1) 
and the dimension of the problems involved in the construction of consistent 
structures of invariant quadrature rules will be considerably reduced. 

First of all, let us note that it is not difficult to obtain a basis of Y'd by using 
the barycentric polynomials Aj = Aj(x). Let I? = (fio, fIl ... , An,) denote a 
multi-index, I? e Nn+I, with 1fl1 = fio + fl, + *.. + fin . Given that Aj E 91, 
we have that A-8 = A&40A4l A... E Y1.81 , for every f e N+ Then, it is 
straightforward to show that 

(3.2) 3d = span {A: fl E Nn+I, 1fl = d} 
On the other hand, we can use basic rules (1.9) for representing the invariant 
part of each polynomial A)8 as 

(3.3) q.8(x) = R(A8; x). 
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Then, 

(3.4) ?2 =span{qi: fiENnl 1 ,1 =d} 

and hence, denoting by 

(3.5) A(n, d) = card { E n+1 :III = d, /o > I > ...> fln}, 

we have 

(3.6) dim97d =A(n, d), n, d eN, n . 

Now it is important to guarantee that invariance and homogeneity are com- 
patible. This will be done through the following 

Definition 6. A nondegenerate n-simplex Tn is said to be centered at the origin 
when its barycenter coincides with the origin of coordinates, that is, when 

(3.7) Aj(0, O, ... ,0)= 1 = 0 n. 

Note that when the simplex is centered at the origin we have 

s(O, O,9 ..., 1)) = (1) O , ... 0) VS E 9?n 

which ensures that (1.2) can be satisfied by a homogeneous polynomial p. 

Lemma 1. For every n, d E N, n > 1, let A(n, d) be given by (3.5) and let 
Ld/2J standfor the integer part of d/2. Then, 

(3.8) A(1,d) =1+Ld/2J for everydeN, 
(3.9) A(n,d)=A(n-1,d) ifn>2andd<n, 

A(n, d) =A(n- 1, d)+A(n, d-n- 1) 
(3.10) ifn >2 and d > n +1. 
Proof. It is clear that 

A(1,d)=card {(fo,,BI)E N2 :go > fil,o + p1 = d }= + Ld/2J. 

Now, let n > 2 and d < n. This implies fn = 0 in (3.5) and therefore 

A(n, d) = card {(fo, .**, flnI, 0) e Nn+: fo > ... > fin-i > ?0, i d} 

( ~~~~~~~~~~n-I 
= card (flo, ... ,fln-1) E Nn: flo > ...> fln- , i = dZ 

=A(n - 1 id). 

Finally, when n > 2 and d > n + 1 we can consider two possibilities in (3.5). 
Either f,n = 0 or fn > 1. Then, 

A(n, d) =A(n- 1, d) 
n 

+ card (fo . l)E nI:fo> fn>IgEfi=d} 
i=o 
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and calling yi = f3i - 1, we have 

A(n, d) = A(n - 1, d) 

+ card{(yo,** Yn )ENn+1 :YO> ..> Yns ,yji= d -n-1 

= A(n - 1, d) + A(n, d - n - 1). 

Lemma 2. Given a nondegenerate simplex Tn in 1R', let u = (uI, ..., un) be 
the map u: R*n ,' Rn defined by 

n 

(3.11) Uk(x) = E [Aij(x) - Aj(0,,.. , 0)]k+i , k =1,.. ,n 
j=O 

and, for every multi-index a = ( ..., an) E Nn, let uc be the polynomial 
U =ul ...Uan. Then 

(a) The interior of the set U = u(Rn) is not empty. 
(b) The set of polynomials {ua: a E Nn} is linearly independent in Y. 

Proof. First of all, denote 

,aj(x) = Aj(x) - Aj (O, O,. , O) ,j = O,., n . 

Then, given that En 0 Aj(x) = 1 , we have En j7 uj (x) = 0 and hence guo(x) = 

EZnI -,Uj(x). Therefore, we can write 

(3. 12) u(x) =z(,(x)) 

where =(I,... ,n), Z = (Z, , Zn) and 

n / n \ k+1 

(3.13) Zk(#) = ,k+l + |E _,j | ,k =I, , n. 
j=1 \j=i / 

Now the Jacobian of the map u, say I 'lu can be written as 

au a Iz 01#1 
ax 11 Oax 

Note that '9"" = i and, given that the simplex Tn is nondegenerate, this ax, ax, 

implies that the Jacobian |9# is constant and different from zero. On the 
other hand, differentiating (3.13), we get 

9 Zk 
(k + 1)(#i _ Uk), i, k =1, ..,n. 

But 

Pi -go ..1.1...g1 
2 2 2 2 MtO MPi M n M -VMO .. n M Mo 2 2 2 

I /to... VnM/t n n n /t Mi i 
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and therefore 

|a8Z| = (n + 1)! 11 lHj - 11il. 
a# j~~~>i 

In conclusion, we have proved that the Jacobian 1 9u I is different from zero in 
all points of R n except in those belonging to the hyperplanes defined by 

Mij(x)M-,i(x)=O, i, j=O,... ,n, j>i. 

Now, use the Inverse Function Theorem and the result (a) follows immediately. 
To prove (b), suppose that for a finite set I C Nn we have a polynomial 

p(x) = ZcrEI aau(x)a such that p(x) = 0 for every x E R1n. This means that the 
polynomial q(u) = Z I,E, aa,ua vanishes for all u E U. Given that the interior 
of U is not empty, and that the monomials ua are linearly independent when 
considered as polynomials in the variables u1, .. , U, this implies a,a = 0 for 
every ct e I, and the result follows. 0 

Lemma 3. For every n, d e , n > 1, let A(n, d) be given by (3.5) and let 

(3.14) B(n,d)= card{a e Nn: ,(i+ 1)ai<d}. 

Then, B(n,d)=A(n,d) 

Proof. Given that the relations (3.8), (3.9) and (3.10) determine the value of 
A(n, d) for all n, d e N, n > 1, it is sufficient to show that also B(n, d) 
satisfies those relations. For n = 1, we have B(1, d) = card {aI: 2al < d} = 

1 + Ld/2] . On the other hand, when n > 2 the values that an can take in 
(3.14) are an = 0, 1, ... , Ld/(n + 1)J . Then, fixing a,n = k, we have 

card {(al. ..anI k) E Nn: E(i + )ai + (n + 1)k < d} 

= card {ce E Nn- I 
j(i + I)aj < d - k(n + 1)} 

and hence 
Ld/(n+1)J 

(3.15) B(n , d) = E B (n - l,5 d - k(n + 1)), 
k=O 

which proves that B(n, d) = B(n- 1, d) when d < n . Finally, when d > n+ 1, 
we can use (3.15) to write 

Ldl(n+I)J-I 

B(n, d- (n + ))= B(n - 1 d-(k + 1)(n + 1)) 
k=O 

Ld/(n+ 1)] 

= Z B(n-1,d-k(n+1)). 
k=1 

Then we have that 

B(n, d) - B (n, d - (n + 1)) = B(n - 1, d), 

which completes the proof. 5 
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Theorem 2. Let a nondegenerate simplex Tn be centered at the origin and, for 
every ar E Nn, let Ua = UlIUl2 ...Un, where Uk = Uk(x), k =1,...,n, are 
the polynomials defined by (3.1 1). Then 

(~~~~~~ 
(3.16) *= span u:aE Nn, Z(i + l)aj = d 

i=1 

(~~~~~~ 
(3.17) 9; =span{u: a E Nn Z(i+ )aj< d 

(3.18) 9* = span {ua: a E N} . 

Proof. It follows from (3.11) that each Uk is a homogeneous polynomial of 
degree d = (k + 1). Moreover, given that the simplex Tn is centered at the 
origin, we can write (3.1 1) as 

n - k+l 

(3.19) Uk(X)= , n + k n, 

which shows that the polynomials Uk(x) are also invariant under permutations 
of the barycentric coordinates Aj(x). Therefore, we have that each ua is a 
homogeneous and invariant polynomial of degree d = En=I (i + 1)aj . On the 
other hand, using Lemma 3, we have that 

{ ~ ~ ~~~n 
(3.20) card{u: ae Nn Z(i+ 1)ai<d } =ddim <, 

i=l 

since the polynomials ua , a E Nn, are linearly independent (Lemma 2). Now 
(3.17), and hence (3.16) and (3.18), follow immediately. 0 

4. CONSISTENCY CONDITIONS 

We now return to the problem of constructing an invariant quadrature rule 
(2.9) with a given degree of precision d. In what follows the simplex Tn will 
be supposed to be centered at the origin, and we shall use the basis of '9; given 
by (3.17). Therefore, we shall refer to 

n 

(4.1) Q(U') -I(U') = 0 , aE N Sn: E(i + I)aji < d 
i=1 

as the moment equations that the rule must fit to have degree of precision d. 
Note that the rule structure (Ko, K,, ... , KMn) determines the functional de- 
pendence on the unknowns (free parameters) in the nonlinear system of moment 
equations. 

On the other hand, the number of nodes of the rule and the number of 
unknowns of the system of moment equations are given by (2.10) and (2.1 1), 
respectively, where the values of vi and (ri + 1) for each type of basic rule 
are listed in Tables 1 and 2. This situation suggests that there are types of 
basic rules that are better than others, in the sense that they produce more free 
parameters with a smaller number of nodes. Nevertheless, it is not possible to 
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construct an invariant quadrature rule with a given degree of precision if we 
choose arbitrarily the numbers Ki which define the structure. This is because 
the existence of a solution of (4.1) requires a certain minimum number of basic 
rules of each type. These restrictions on the numbers Ki are called consistency 
conditions and were introduced in [14, 18 and 19] for fully symmetric multi- 
dimensional quadrature rules. In this section we derive general consistency 
conditions for invariant quadrature rules for the n-dimensional simplex Tn, in 
a convenient and systematic form. 

Before deriving the consistency conditions, let us try to clarify the mean- 
ing of this concept. We consider the system of moment equations (4.1) and 
note that Lemma 2 guarantees that there is no linear dependence between these 
equations. Under the hypothesis that there is no other form of algebraic depen- 
dence between the moment equations, it is commonly assumed that a necessary 
condition for this nonlinear system to have a solution is that the number of 
unknowns of the system be greater or equal than the number of equations, i.e., 

Mn 

(4.2) 1:(ri + I Ki > dim 91; . 
i=o 

However, we can also obtain linear combinations of equations (4.1) that make 
some of the unknowns disappear. These kinds of subsystems will be obtained 
by applying the equation Q(p) - I(p) = 0 to polynomials p belonging to some 
special subspaces of 9.d . When the equations of these subsystems are linearly 
independent, a condition that is guaranteed by the linear independence of the 
polynomials p used to obtain them, it is natural to impose, as a necessary 
condition for the existence of solutions, that the number of unknowns that 
remain in the subsystem be greater or equal than the number of equations of 
the subsystem. In order to translate these ideas into conditions on the rule 
structure of a quadrature rule, that is, into inequalities similar to (4.2), we 
consider, for a given n, the classes , i = 0, ... , Mn, with the order relation 
< defined in ?1. 

Definition 7. A set J c {0, ... , M4} is said to be a consistency set if it has 
the property that for every i, j e J such that i 5$ j, 4 70 &$j and Fj 74 . 
That is, a consistency set is a set of indices of classes that are not related by -< . 

Definition 8. Given a consistency set J, the null space 9.d (J) is the linear 
space of invariant polynomials given by 

(4.3) g(J) ={P e : Vi E J, Vx E j, p(x)=O}. 

Now, for every consistency set J denote by J' the set J'C{0, 1, *-. I Mn } 
defined by 

(4.4) J'-{i 0 J: VjEJ, %#7 } 
and consider any equation of the form 

(4.5) Q(p) - I(p) = 0, P E 3d (J) 
that is obtained as a linear combination of the moment equations (4.1). Note 
that in such an equation the parameters that correspond to basic rules of types 
% such that % = Fj or -i < j for some i E J do not appear. Given that 



CONSISTENT STRUCTURES FOR THE n-SIMPLEX 1183 

the maximum number of linearly independent equations of the form (4.5) is 
equal to the dimension of 93 (J), we have a consistency condition associated 
with every consistency set J and hence the following 

Definition 9. A rule structure (Ko, K1, ..., KM,) is d -consistent when the 
consistency condition 

(4.6) Z(ri + l)Ki > dim9;7 (J) 
iEJ' 

is satisfied for every consistency set J c {0, 1, .., Mn }. 

We note that, taking J = z, we have 93d (J) --7 and J' = {0, 1, 
Mn }. Hence, the first consistency condition we obtain is (4.2). On the other 
hand, given that n = [1, 1,... , 1] = In, taking J = {Mn }, we have J' = 0 
and dim 9*(J) = 0. Hence, the corresponding consistency condition reduces 
to the trivial inequality 0 > 0. 

Now, we need to use several spaces of polynomials whose set of variables 
is different from x = (xl, ..., xn). As usual, we shall refer to these spaces 
by specifying the set of variables between brackets, that is, denoting them as 
92[YL, . . . Yr] J -9d[YI d... d Yr] or Xd[[Yi, ..., Yr] , for instance. 

For every i = 0, ..., Mn, let &2 = [mo, ml, ... mrj], and let Vi be the 
ri-dimensional affine manifold such that {s(Vi) s E g } coincides with the 
set of points of class ?. According to Definition 3, each point x e Vi has a 
barycentric representation 

mo times ml times mri times 

(4.7) A()=(ao .., , al, . ... al,**, a,, ... ra,) 

with Eri_0 mjaj = 1 . If we call 

(4.8) yj = aj - n+ I,j=0, ..., ri, 

with EJi mjyj = 0 , we can translate (4.7) into 

(4.9) x= hi(y1, . ,Yri), 

and Vi can be written as 

(4.10) Vi = {x = hi(y, ... Yri) ( (Yl i ,Yr) E Rr}* 

Then, for every i = 1, ..., n, we can define a linear map, usually called 
comorphism, wi: 7* Y[yl, ... , Yr1 given by 

(4.11) Wi(P)(YI ... * Yri) = p(hi(y1, *... * Y,)) , P E g* 

For i = 0, we have Fo = [n + 1] and ro = 0. Then, w0: ,9* R is given by 
wo(p) = p(O, ** *, ?), P e Y* D 

On the other hand, given that 9* = span{u: a E Nn} (see Theorem 2), 
we can define the comorphisms wi, i = 0, ..., , by calculating wi(ua) 
for a E N. It is clear that 

(4.12) WO(ua)={~ if a-(0,? 0), 
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and, for i =1, ...M,M and k= 1,..., n, using (3.19), we have 

ri 

(4.13) Wi(Uk)(Y1, * , Yri) = k+ 

j=O 

where yo = -I E 1 mjyj . Therefore, 

k+1 

(4.14) Wr(Uk)(Y1 y )= (l)k+1 (imjy) ++ mjyk+1 

and 
n 
.~ ~ ~~N _ 

i=1...3 (4.15) Wi(Ua) = JJ(wi(Uk))k C X E , i = 1, ... , Mn. 
k=1 

Note that in view of (3.16), (4.14) and (4.15), it is straightforward to prove that 

(4.16) P E Xd* W(P) E 7d[Yi, ..., yriI, i = 1, . .., Mn . 

Now, for every consistency set J {i1, ..., is}, J $ 0, let Wj be the 
map 

(4.17) wi: 
9 I 2Yl,* Y[-, yril 

iEJ 

defined by 

(4.18) W(P) = (Wj (P),... , w(P)), P E 35P 

Then, it is clear that the corresponding null space .? (J) can be written as 

(4.19) .?P (J) = {P e .7 :wJ(p) = (O -0)}. 

Lemma 4. For every consistency set J :$ 0, 

d 
(4.20) dim wj (.9;) = Zdim wJ (Xk*). 

k=O 

Proof. When J = {O}, we have Wj = wo. Then, using (4.12), we easily see 
that dim wo(.?A) = 1, dim wo(A*) = 1 and dimwo(Xk*) = 0 for k > 1. 
When J $ {0}, we have that 0 0 J (see Definition 7). In this case, we prove 
that 

(4.21) WJ(SD ) = wJ(Xo*) e*eWJ(4r). 

Given that Wj is linear and .* = ...* e * d*, it is clear that for ev- 

ery PE Y, . we have wj(p) = Ed= wJ(pk), where WJ(pk) E WJ(Xk*) for 
k = 0,..., d. On the other hand, let Pk E k k= ,..., d, such 
that Ek oWJ(pk) = 0. Then, kZ0oWi(pk) = 0 for every i e J. But (4.16) 
guarantees that Wi(Pk) e k[YI, ... , yriI for k = 0, ... , d , and this im- 
plies that Wi(PO), ... , Wi(Pd) are linearly independent. Therefore, we must 
have Wi(Pk) = 0, k = 0, ...,d, i E J. That is, wJ(pk) = 0 fork = 
O,... ,d. O 
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Theorem 3. Let the simplex Tn be centered at the origin and let J $& 0 be a 
consistency set. Then, for every d e N, 

d 

(4.22) dimYd (J) = A(n, d) - E dim WJ (k*). 

k=O 

Proof. Let wj I_q; denote the restriction of Wj to ,.9'. From (4.19) it is obvi- 
ous that the null space 9* (J) is the kernel of wjI I. But wj jc, is a linear 

d ~~~~d 
map, and hence 

(4.23) dim9d* = dim 
Ker(wjI_o*) 

+ dim Im(wjIl*) 
that is, 

(4.24) A(n, d) = dim&9; (J) + dim wj (,9%) . 

Now, use Lemma 4, and the result follows. El 

5. ON THE COMPUTATION OF CONSISTENT STRUCTURES 

In this section we describe the more relevant aspects of the method we have 
used for computing optimal d-consistent structures, that is, d-consistent struc- 
tures with a minimal number of nodes. We can also use a similar procedure for 
computing d-consistent structures that have a number of nodes that is near the 
minimal one. We shall refer to this kind of structures as quasi-optimal. 

First of all, for a given range of values of n and d, we use the recurrence 
relations given in Lemma 1 for calculating the numbers A(n, d) or dim 'd7* 
and store them in a file. For every dimension n, the set of classes {%, i = 
0, . .. , MnI is obtained, starting with the class Wm, = [1 1, ... , 1], by using 
the order relation -<, with the concept of contracted version explained in the 
comments to Definition 3. At the same time we construct the relation tree, with 
branches connecting the classes related by <, and store it as a matrix ' = t Wj) 
given by 

(5.1) -{ 1 if -< , 

For each class we also calculate the numbers vi and ri. Using the matrix I, 
we easily obtain all the consistency sets J and the corresponding J', which 
allows us to construct the left-hand sides of the consistency conditions (4.6). 

Now, for a given n, the next step is to obtain the right-hand sides of (4.6). 
We first note that if J = o, then dimE9*(J) = A(n, d) . For other consistency 
sets J $4 0, Theorem 3 shows that it is sufficient to calculate dim wj (d*) for 
the desired range of values of d. It is well known that dim wj(d*) coincides 
with the rank of the matrix that represents the linear map wjlx* , i.e., the 
restriction of Wj to Ad*. When the consistency set has only one element, say 
J = {i}, this matrix consists of the coefficients of the polynomials wi(ua), 
for the a E N' such that EZnU1(i + l)aj = d , when they are written as linear 
combinations of the standard basis of monomials of the space Xd[y, . , yrij 
When J = {il, ... , iQ}, then wJ = (wi, ... , wiQ) and the corresponding 
matrix associated with J is the matrix (Eil I Ei2 I * I Ei ), where each Eij 
stands for the matrix associated with J = {ij} as shown before. We illustrate 
this with two examples for n = 3 and d = 6. 
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Example 1. Consider the consistency set J = {3} corresponding to the class 
F3= [2, 1, 1]. According to (4.14) the polynomials W3(Uk) are 

W3(UI) = y 2+y 2+ 4(Yv +Y2)2 =1(3y2 + 2yIy2 + 3y2), 

w3(u2) = Y3 + Y2 -4 (Yi + Y2)3 =(3 y3-3y 2 + 3), 

W3(U3) = + Y4 + I (YI + Y2)4 = 8(9y' + 4Y13Y2 + 6y2y2 + 4y1 y3 + 9y 4). 

Then, the images of the corresponding homogeneous polynomials uc of degree 
d = 6 are 

w3(ul) = 8(27y6+ 54y5Y2 + 117 7y4y22 + 1 1 6y2+ 1 1 7y12 + 54y, y2 +27 y6), 

W3(U2) = I (9y6 _ 18Yy2 - 9y-y4y2 + 36yl3y3 _ 9y2y4 _ 18y y5 + 9y6) 

W3(u1u3) =~ l(27y6 + 30 y2 + 53y14y2 + 36y3y23 + 53y2y24 + 30y1y5 + 27y6). 

Therefore, the associated coefficient matrix is 

1 '54 108 234 232 234 108 54 
E= 9 -18 -9 36 -9 -18 9 

16 27 30 53 36 53 30 27/ 

Given that rank(E) = 3, we have dimwj(6*) = 3. 

Example 2. Consider now J = {1, 2}, with g = [3, 1] and 2 = [2, 2]. 
Then, 

WI (uI ) = yl2 + 'yl= 4y, w2(u) = 2y + 2y24y2 

WI (U2) = Y13-g3 = -Y1, w2(u2)= 2y3-2y3=0, 

w1(u3) =y+ 217yj 27YI' w2(u3)= 2y + 2y =4y. 

Now, the images of the homogeneous polynomials uO of degree d = 6 and 
their corresponding matrices are 

wl(ul3) = 64y6,z 64 3) w2(u?)=64y6, 64 27 (64 ( 6 
wl(62) 46 = 64 w2(uE2) =0, E2= 0). 

w1(u1u3) = 8K Y ' 5 w2(u1u3) - 16y, 161 

Then, the matrix associated with the consistency set J is 

64 64\ 

(EIjE2)= 064 j rank(ElIE2)=2, 
816 

1812 168 

and hence, dim WJ (X6*) = 2. 

In the general procedure the rank of these matrices is calculated by a standard 
singular value decomposition routine. Some savings can be effected in practice 
by taking into account some special situations. For example, when for a given 
degree d we find a consistency set J such that the rank of its associated matrix 
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TABLE 3. Minimal number of nodes vL(n, d) 

n = 2 n = 3 n =4 n = 5 n =6 n = 7 n= 8 

d=1I 1 1 1 1 1 1 1 
d =2 3 4 5 6 7 8 9 
d= 3 4 5 6 7 8 9 10 
d= 4 6 11 16 22 29 37 46 
d= 5 7 14 21 28 36 45 55 
d= 6 12 24 41 68 98 136 183 
d= 7 13 30 55 84 140 192 255 
d = 8 16 43 90 164 267 431 622 
d = 9 19 52 120 210 351 578 835 
d = 10 24 68 171 325 644 1076 1699 
d= 11 27 81 206 470 848 1511 
d = 12 33 117 306 736 1456 2715 
d = 13 36 133 381 917 1911 3633 
d= 14 42 163 485 1272 2870 
d= 15 46 190 616 1662 3816 
d= 16 52 233 766 2218 
d= 17 58 266 931 2734 
d= 18 66 318 1161 3649 
d= 19 70 355 1396 
d= 20 78 415 1750 
d= 21 85 472 2060 
d= 22 93 539 2421 
d= 23 100 602 2826 

coincides with its number of rows, then we know that this rank holds for any 
other consistency set that contains J. On the other hand, some precautions 
must be taken when using a singular value decomposition routine for calculating 
the rank of matrices that can be very large. We have used 32 digits of accuracy 
and a standard test which takes into account the dimensions of the matrix, 
the biggest modulus of the singular values and the precision of the machine to 
decide whether a singular value is equal to, or different from, zero. In addition, 
the result is only accepted if there is a significant ratio (of at least 1010 ) between 
the smallest modulus of the nonzero singular values and the biggest modulus of 
the singular values considered zero. These precautions limit considerably the 
range of values of n and d that can be considered, but they are necessary to 
insure confidence that the computeI ranks are correct. This is why some entries 
in Table 3 are missing. 

Now, for obtaining an optimal d-consistent structure we have to solve a 
problem of integer linear programming in which the objective function to be 
minimized is the number of nodes given by (2.10), subject to the constraints 
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TABLE 4. Optimal consistent structures for T2 and T3 

n d Ko K1 K2 Np(Q) v(Q) n d Ko K1 K2 K3 K4 Np (Q) v (Q) 
2 1 1 1 1 3 1i 1 1 
2201 2 3 3201 2 4 
2 3 11 3 4 3 3 11 3 5 
2 4 02 4 6 3 4 1 1 1 5 I11 
2 5 1 2 5 7 35 02 1 6 14 
2 6 0 2 1 7 12 3 6 0 3 0 1 9 24 
2 7 1 2 1 8 13 3 7 0 3 1 1 11 30 
2 8 1 3 1 10 16 3 8 1 3 1 2 15 43 
2 9 1 4 1 12 19 3 9 0 4 2 2 18 52 
210 0 4 2 14 24 3 10 0 5 2 3 23 68 
211 0 5 2 16 27 311 1 5 2 4 27 81 
212 0 5 3 19 33 3 12 1 5 2 5 1 34 117 
213 0 6 3 21 36 3 13 1 6 2 6 1 39 133 
214 0 6 4 24 42 314 1 6 3 8 1 47 163 
215 1 7 4 27 46 3 15 0 7 3 10 1 54 190 
216 1 7 5 30 52 3 16 1 7 4 11 2 64 233 
217 1 7 6 33 58 3 17 0 8 3 14 2 72 266 
218 0 8 7 37 66 3 18 0 9 3 16 3 84 318 
219 1 9 7 40 70 3 19 1 9 3 19 3 94 355 
220 0 10 8 44 78 320 1 9 5 21 4 108 415 
221 1 10 9 48 85 321 0 10 4 24 5 120 472 
222 0 11 10 52 93 322 1 10 5 27 6 136 539 
223 1 11 11 56 100 3 23 0 11 5 30 7 150 602 

(4.6) and Ko < 1 . A standard implementation of the branch and bound method 
with a linear programming code is used to determine the minimal number of 
nodes. At this stage we obtain at least one optimal d-consistent structure as 
solution of the integer programming problem, but not necessarily all possible 
ones. On the other hand, we note that when dimE9 (J) = 0, then the corre- 
sponding constraint in the programming problem is always feasible and can be 
removed. For example, for n = 8 the number of consistency conditions is 573, 
but only when d > 72 are all of them effective. When d = 10, for instance, 
only 83 consistency conditions have a right-hand side different from zero. 

Table 3 contains the results obtained by the method described above. We give, 
for a wide range of values of n and d, the number of nodes of an optimal 
d-consistent structure. This number is of course a possibly unattainable lower 
bound on the number of nodes required by an invariant quadrature rule with 
degree of precision d for the n-dimensional simplex T, . 

Once we know the minimal number of nodes, say vL(n, d), it is not difficult 
to obtain all the optimal and quasi-optimal d-consistent structures for each 
value of n and d. For this, we use a combinatorial method for generating all 
the possible rule structures that have a fixed number of nodes vL(n, d) + k, 
for k = 0, 1, 2, etc. Then, we check the consistency conditions (4.6) and 
reject those rule structures which result not to be d-consistent. We found all 
the optimal d-consistent structures to be unique. 
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TABLE 5. Optimal consistent structures for T4 

ni d K0 K, K2K3 K4 K5 K6 Np(Q) v(Q) 
4 1 1 1 1 
4 20 1 2 5 
4 3 11 3 6 
4 4 1 1 1 5 1 6 
4 5 1 2 1 7 2 1 
4 6 1 2 1 1 10 41 
4 7 0 3 2 1 13 55 
4 8 0 4 2 1 1 18 90 
4 9 0 4 3 2 1 23 120 
410 1 4 3 3 2 30 171 
411 1 5 4 4 2 37 206 
412 1 5 4 6 2 1 47 306 
413 1 6 5 6 4 1 57 381 
414 0 7 5 8 6 1 70 485 
415 1 7 5 10 7 2 84 616 
416 1 7 7 12 8 3 101 766 
417 1 8 7 1410 4 119 931 
418 1 8 8 16 12 6 141 1161 
419 1 9 7 1914 8 164 1396 
420 0 10 8 21 16 10 1 192 1750 
421 0 10 9 24 18 13 1 221 2060 
422 1 10 9 27 22 16 1 255 2421 
423 1 11 10 30 23 21 1 291 2826 

The unique optimal d-consistent structures, for the same range of values of 
n and d as in Table 3, are presented in Tables 4, 5, 6 and 7. In each table, 
the column corresponding to Ki has been suppressed if it contains only zero 
entries. On the other hand, extensive listings of quasi-optimal structures are 
given by the authors in [17]. 

An important remark is that the hypothesis that the simplex Tn is centered 
at the origin is relevant only for the theoretical results (Theorems 2 and 3) that 
support the method we have used for computing the right-hand sides of the 
consistency conditions (4.6). However, the consistent rule structures and other 
numerical results given in this paper are valid for a general (nondegenerate) 
simplex in the n-dimensional Euclidean space R' . 
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TABLE 6. Optimal consistent structures for Ts and T6 

n d Ko K1 K2 K3 K4 K5 K6 K7 K8 Np(Q) v (Q) 
5 1 1 1 1 
5 2 0 1 2 6 
5 3 1 1 3 7 
5 4 1 1 1 5 22 
5 5 1 2 1 7 28 
5 6 0 3 0 1 1 11 68 
5 7 1 3 1 1 1 14 84 
5 8 0 4 2 1 1 1 20 164 
5 9 1 4 3 1 2 1 26 210 
510 0 5 3 2 3 2 35 325 
511 0 5 4 1 4 4 44 470 
512 0 6 4 2 5 4 1 1 58 736 
513 1 6 4 2 7 6 1 1 71 917 
514 0 7 4 3 9 9 0 1 1 90 1272 
515 0 7 6 310 11 1 2 1 110 1662 
516 1 7 7 312 14 1 3 2 136 2218 
517 1 8 7 314 18 2 4 2 163 2734 
5118 1 8 8 316 22 2 6 4 199 3649 

n d KO K1 K2K3K4K5 K6K7K8K9 Np(Q) v(Q) 
6 1 1 1 1 
6 2 0 1 2 7 
6 3 1 1 3 8 
6 4 1 1 1 5 2 9 
6 5 1 2 1 7 36 
6 6 0 3 0 1 1 11 9 8 
6 7 0 3 2 1 1 15 140 
6 8 1 3 3 1 1 1 21 267 
6 9 1 4 3 2 2 1 28 351 
610 0 5 3 2 3 2 1 38 644 
611 1 5 4 3 4 3 1 49 848 
612 0 6 4 4 5 4 1 1 1 651456 
613 0 6 5 4 7 6 2 1 1 821911 
614 0 7 5 5 8 9 3 1 1 1 105 2870 
6 15 1 7 6 4 1012 4 2 2 1 131 3816 
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TABLE 7. Optimal consistent structures for T7 and T8 

n d K0 K1 K2 K3 K4 K5 K6 K7 K8 Kg K10 Np(Q) v(Q) 

7 2 0 1 2 8 
7 3 1 1 3 9 
7 4 1 1 1 5 37 
7 5 1 2 1 7 45 
7 6 0 3 0 1 0 1 11 136 
7 7 0 3 2 1 0 1 15 192 
7 8 1 3 2 0 1 2 1 22 431 
7 9 0 4 3 2 1 2 1 29 578 
710 0 5 3 3 0 3 2 1 40 1076 
711 1 5 4 2 1 4 4 1 521511 
712 1 5 4 3 1 6 4 2 1 0 1 70 2715 
713 1 6 4 3 2 7 7 3 1 0 1 893633 

n d Ko K, K2 K3 K4 K5 K6 K7 Np(Q) v(Q) 
8 1 1 1 1 
8 2 0 1 2 9 
8 3 1 1 3 10 
8 4 1 1 1 5 46 
8 5 1 2 1 7 55 
8 6 0 3 0 1 0 1 11 183 
8 7 0 3 2 1 0 1 15 255 
8 8 1 3 2 0 1 2 1 22 622 
8 9 1 4 3 2 1 2 1 30 835 
810 1 4 4 2 1 3 2 1 41 1699 

6. PREVIOUSLY PUBLISHED STRUCTURES WHICH ARE INCORRECT 

Our investigation has uncovered some errors in a list of structures in Keast, 
[12, pp. 345 and 346]. We found that at least fourteen rule structures of degrees 
6, 7 and 8 listed there do not satisfy our consistency conditions (4.6). These 
are: 

- The first four rule structures of degree 6. 
- The first six rule structures of degree 7. 
- The first four rule structures of degree 8. 

Dr. Keast subsequently reexamined some of his calculations (carried out in 
1980). We have been informed that he has found at least one computational 
error which accounts for these particular errors. 
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